7 research outputs found

    Fit between humanitarian professionals and project requirements: hybrid group decision procedure to reduce uncertainty in decision-making

    Get PDF
    Choosing the right professional that has to meet indeterminate requirements is a critical aspect in humanitarian development and implementation projects. This paper proposes a hybrid evaluation methodology for some non-governmental organizations enabling them to select the most competent expert who can properly and adequately develop and implement humanitarian projects. This methodology accommodates various stakeholders’ perspectives in satisfying the unique requirements of humanitarian projects that are capable of handling a range of uncertain issues from both stakeholders and project requirements. The criteria weights are calculated using a two-step multi-criteria decision-making method: (1) Fuzzy Analytical Hierarchy Process for the evaluation of the decision maker weights coupled with (2) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to rank the alternatives which provide the ability to take into account both quantitative and qualitative evaluations. Sensitivity analysis have been developed and discussed by means of a real case of expert selection problem for a non-profit organisation. The results show that the approach allows a decrease in the uncertainty associated with decision-making, which proves that the approach provides robust solutions in terms of sensitivity analysis

    Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5-Dimethylfuran: Progress and prospective

    Full text link
    In recent years, 2,5-Dimethylfuran (DMF) is found as a promising new biofuel generation that could be synthesized from renewable and available lignocellulosic biomass in small-to-large scale. The combustion characteristics of DMF are believed to be comparable to those of fossil fuels. Many studies have focused on the synthesis pathways of DMF from the various feedstock, while decomposition mechanism and combustion characteristics were also carefully investigated by experiments and simulations. In addition, kinetic mechanisms were developed in detail and were used to compare to quantum chemical calculations. However, the production strategy should be understood clearly to target the commercialization goal of DMF. Moreover, the decomposition mechanism through pyrolysis and oxidation reactions, flame characteristics, and spray characteristics of DMF should be completely analyzed to evaluate the characteristics of combustion and emission formation as applying DMF to the engine. In the current paper, the production progress of DMF was thoroughly detailed via catalyst reactions. More importantly, the critical route from decomposition to combustion was critically discussed based on the collection and consolidation of data achieved from experiment and the kinetic model validations aiming to improve the data fidelity, to develop the accuracy of kinetic models, and to minimize the experimental uncertainties. Finally, this work could become a motivation to perform further investigations on using DMF as a promising biofuel for the engine
    corecore